Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2',7,7'-Tetrabromo-9,9'-spirobifluorene toluene hemisolvate

Ailing Guo^a and Ruitao Zhu^b*

^aDepartment of Traditional Chinese Pharmacology, Shanxi University of Traditional Chinese Medicine, Taiyuan 030024, People's Republic of China, and ^bDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China Correspondence e-mail: ruitaozhu@126.com

Received 24 May 2009; accepted 3 June 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.043; wR factor = 0.091; data-to-parameter ratio = 14.7.

There are two independent molecules and one toluene solvent molecule in the asymmetric unit of the title compound, $C_{25}H_{12}Br_4 \cdot 0.5C_7H_8$. The dihedral angles between the fluorene ring systems are 85.30 (6) and 84.95 (6) $^{\circ}$ in the two molecules. The disortions in angles from the ideal sp^3 -hybridization geometry around the tetrahedral C atoms are due to the strain imposed by the central five-membered ring and steric effects.

Related literature

For applications of spirobifluorene compounds, see: Hagen et al. (1997); Pudzich et al. (2006); Salbeck et al. (1997); Iour et al. (1990). For details of the synthesis, see: Marsitzky & Carter (2001).

Experimental

Crystal data $C_{25}H_{12}Br_4 \cdot 0.5C_7H_8$ $M_r = 678.06$ Monoclinic, $P2_1/c$

a = 14.6593 (18) Å
<i>b</i> = 29.549 (4) Å
c = 11.3753 (14) Å

 $\beta = 96.878 \ (2)^{\circ}$ $V = 4891.9 (10) \text{ Å}^3$ Z = 8Mo $K\alpha$ radiation

Data collection

Bruker SMART-CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.189, \ T_{\max} = 0.438$ (expected range = 0.161 - 0.372)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	586 parameters
$wR(F^2) = 0.091$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
8616 reflections	$\Delta \rho_{\rm min} = -0.41 \text{ e} \text{ Å}^{-3}$

 $\mu = 6.60 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.15 \text{ mm}$

20291 measured reflections

8616 independent reflections

5479 reflections with $I > 2\sigma(I)$

. Т – 293 К

 $R_{\rm int} = 0.045$

Table 1 Selected bond angles (°).

C19-C9-C8	112.9 (3)	C31-C34-C33	100.9 (4)
C19-C9-C21	101.0 (4)	C31-C34-C46	114.2 (4)
C8-C9-C21	116.8 (4)	C33-C34-C46	116.9 (4)
C19-C9-C6	113.4 (4)	C31-C34-C44	113.7 (4)
C8-C9-C6	101.6 (3)	C33-C34-C44	110.2 (4)
C21-C9-C6	111.6 (3)	C46-C34-C44	101.5 (4)

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors thank Professors Bo Liu and Jianping Guo for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2831).

References

- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Marsitzky, D. & Carter, K. R. (2001). Polym. Prepr. 42, 450-451.
- Hagen, J., Schaffrach, W., Otschik, P., Fink, R., Bacher, A., Schmidt, H.-W. & Haarer, D. (1997). Synth. Met. 89, 215-220.
- Iour, J. M., Wu, R. L. & Schumn, J. S. (1990). J. Am. Chem. Soc. 112, 5662-5663
- Pudzich, R., Fuhrmann-Lieker, T. & Salbeck, J. (2006). Adv. Polym. Sci. 199, 83-142.
- Salbeck, J., Yu, N., Bauer, J., Weissortel, F. & Bestgen, H. (1997). Synth. Met. 91. 209-215.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2009). E65, o1528 [doi:10.1107/81600536809021072]

2,2',7,7'-Tetrabromo-9,9'-spirobifluorene toluene hemisolvate

A. Guo and R. Zhu

Comment

Molecules with a spirobifluorene core have gained wide application in molecular electronics, light-emitting materials production and enantioselective molecular recognition. In addition, macro spiro-organic molecules have attracted interest (Hagen *et al.*, 1997; Salbeck *et al.*, 1997), since they may play a key role in the construction of modern electronic systems and can be used in synthesizing hole transport media which have achieved impressive solar-to-electrical energy conversion efficiencies (James *et al.*, 1990). We are interested in the title compound (TBSBF.0.5(C_7H_8), due to its versatility and utility in organic synthesis and herein we report its crystal structure.

The asymmetric unit of the title compound is shown in Fig. 1. The disortions in angles from the ideal $[109.5^{\circ}]$ sp³ hybridization geometry around the tetrahedral C atoms in each molecule [C9 and C34] are due to the strain imposed by the central five-membered ring and from steric effects. The dihedral angles between the fluorene ring systems in each molecule are 85.30 (6) and 84.95 (6)°.

Experimental

The title compound was synthesized according to the published procedure (Marsitzky & Carter, 2001). To a solution of 9,9'-spirobifluorene (8g, 25.3mmol) in chloroform (100mL) was added bromine (16.6g, 103.7mmol) in 20mL of chloroform (Marsitzky & Carter, 2001). The resulting mixture was stirred overnight at room temperature. The precipitate formed was seperated by filtration and washed with methanol to give the crude target compound. The product, TBSBF, was recrystallized from toluene, giving a yield of 55%.

Refinement

H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C—H = 0.93-0.96 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl C atoms.

Figures

Fig. 1. A view of the asymmetric unit of the title compound: displacement ellipsoids are drawn at the 30% probability level. H atoms are not shown.

2,2',7,7'-Tetrabromo-9,9'-spirobifluorene toluene hemisolvate

Crystal data

$C_{25}H_{12}Br_4 \cdot 0.5C_7H_8$	$F_{000} = 2616$
$M_r = 678.06$	$D_{\rm x} = 1.841 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3526 reflections
a = 14.6593 (18) Å	$\theta = 2.3 - 20.5^{\circ}$
b = 29.549 (4) Å	$\mu = 6.60 \text{ mm}^{-1}$
c = 11.3753 (14) Å	<i>T</i> = 293 K
$\beta = 96.878 \ (2)^{\circ}$	Block, colorless
$V = 4891.9 (10) \text{ Å}^3$	$0.30\times0.20\times0.15~mm$
Z = 8	

Data collection

Bruker SMART-CCD diffractometer	8616 independent reflections
Radiation source: fine-focus sealed tube	5479 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.045$
T = 293 K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 1.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -17 \rightarrow 16$
$T_{\min} = 0.189, \ T_{\max} = 0.438$	$k = -32 \rightarrow 35$
20291 measured reflections	$l = -7 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.091$	$w = 1/[\sigma^2(F_o^2) + (0.0144P)^2 + 2.4065P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
8616 reflections	$\Delta \rho_{max} = 0.56 \text{ e} \text{ Å}^{-3}$
586 parameters	$\Delta \rho_{min} = -0.41 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	-0.17970 (4)	0.057801 (18)	-0.07187 (6)	0.06389 (18)
Br2	0.41951 (4)	0.06834 (2)	0.54188 (6)	0.0780 (2)
Br3	0.35211 (4)	0.03188 (2)	-0.13143 (6)	0.0777 (2)
Br4	-0.03438 (4)	0.24517 (2)	0.36220 (7)	0.0814 (2)
C1	-0.0114 (3)	0.07959 (15)	0.0645 (4)	0.0405 (12)
H1A	-0.0104	0.1040	0.0130	0.049*
C2	-0.0826 (3)	0.04904 (16)	0.0512 (4)	0.0421 (12)
C3	-0.0845 (3)	0.01259 (16)	0.1269 (5)	0.0498 (14)
H3A	-0.1329	-0.0080	0.1159	0.060*
C4	-0.0156 (3)	0.00654 (15)	0.2183 (5)	0.0492 (13)
H4A	-0.0172	-0.0179	0.2695	0.059*
C5	0.0568 (3)	0.03736 (14)	0.2340 (4)	0.0375 (11)
C6	0.0580 (3)	0.07345 (13)	0.1547 (4)	0.0340 (11)
C7	0.1378 (3)	0.04009 (14)	0.3220 (4)	0.0388 (12)
C8	0.1896 (3)	0.07777 (14)	0.2979 (4)	0.0347 (11)
C9	0.1442 (3)	0.10224 (14)	0.1875 (4)	0.0376 (11)
C10	0.1674 (4)	0.01268 (16)	0.4177 (5)	0.0501 (13)
H10A	0.1320	-0.0118	0.4364	0.060*
C11	0.2506 (4)	0.02223 (17)	0.4859 (5)	0.0543 (14)
H11A	0.2711	0.0042	0.5508	0.065*
C12	0.3024 (3)	0.05870 (17)	0.4562 (5)	0.0489 (13)
C13	0.2726 (3)	0.08698 (16)	0.3627 (4)	0.0432 (12)
H13A	0.3078	0.1116	0.3443	0.052*
C14	0.2467 (3)	0.06971 (16)	0.0368 (4)	0.0424 (12)
H14A	0.2388	0.0400	0.0604	0.051*
C15	0.2998 (3)	0.07970 (17)	-0.0519 (5)	0.0478 (13)
C16	0.3145 (3)	0.12396 (19)	-0.0839 (5)	0.0560 (15)
H16A	0.3522	0.1300	-0.1423	0.067*
C17	0.2743 (3)	0.15924 (18)	-0.0305 (5)	0.0534 (14)
H17A	0.2847	0.1890	-0.0518	0.064*
C18	0.2180 (3)	0.14956 (15)	0.0554 (4)	0.0394 (12)
C19	0.2059 (3)	0.10493 (15)	0.0895 (4)	0.0350 (11)
C20	0.1634 (3)	0.17866 (15)	0.1246 (4)	0.0425 (12)

C21	0.1203 (3)	0.15220 (14)	0.2018 (4)	0.0367 (11)
C22	0.1474 (4)	0.22495 (17)	0.1180 (5)	0.0603 (15)
H22A	0.1756	0.2428	0.0654	0.072*
C23	0.0893 (4)	0.24409 (18)	0.1905 (5)	0.0644 (16)
H23A	0.0789	0.2752	0.1886	0.077*
C24	0.0467 (3)	0.21714 (18)	0.2652 (5)	0.0534 (14)
C25	0.0619 (3)	0.17116 (16)	0.2738 (5)	0.0467 (13)
H25A	0.0336	0.1536	0.3267	0.056*
Br5	0.57872 (4)	-0.001178 (17)	0.78287 (5)	0.05951 (17)
Br6	0.81223 (5)	0.319181 (18)	0.53771 (6)	0.0754 (2)
Br7	1.08306 (4)	0.12112 (2)	0.77786 (6)	0.06736 (18)
Br8	0.47421 (4)	0.12801 (2)	0.17964 (6)	0.0820 (2)
C26	0.6546 (3)	0.07355 (16)	0.6731 (4)	0.0422 (12)
H26A	0.6720	0.0521	0.6201	0.051*
C27	0.6064 (3)	0.06097 (15)	0.7653 (4)	0.0413 (12)
C28	0.5793 (3)	0.09210 (18)	0.8438 (4)	0.0479 (13)
H28A	0.5465	0.0828	0.9047	0.057*
C29	0.6008 (3)	0.13751 (17)	0.8321 (5)	0.0500 (13)
H29A	0.5828	0.1588	0.8850	0.060*
C30	0.6496 (3)	0.15086 (16)	0.7401 (4)	0.0388 (12)
C31	0.6764 (3)	0.11875 (15)	0.6618 (4)	0.0360 (11)
C32	0.6816 (3)	0.19535 (15)	0.7053 (4)	0.0366 (11)
C33	0.7255 (3)	0.19035 (14)	0.6042 (4)	0.0373 (11)
C34	0.7297 (3)	0.14035 (15)	0.5697 (4)	0.0381 (11)
C35	0.6764 (3)	0.23790 (17)	0.7552 (5)	0.0494 (13)
H35A	0.6473	0.2417	0.8229	0.059*
C36	0.7144 (3)	0.27440 (17)	0.7042 (5)	0.0540 (14)
H36A	0.7109	0.3031	0.7372	0.065*
C37	0.7578 (3)	0.26854 (15)	0.6040 (5)	0.0471 (13)
C38	0.7643 (3)	0.22627 (15)	0.5533 (4)	0.0426 (12)
H38A	0.7942	0.2224	0.4864	0.051*
C39	0.8987 (3)	0.12948 (15)	0.6703 (4)	0.0440 (12)
H39A	0.8871	0.1423	0.7417	0.053*
C40	0.9858 (3)	0.11444 (16)	0.6533 (5)	0.0487 (13)
C41	1.0036 (3)	0.09547 (17)	0.5478 (5)	0.0533 (14)
H41A	1.0627	0.0857	0.5390	0.064*
C42	0.9350 (3)	0.09092 (15)	0.4558 (5)	0.0507 (14)
H42A	0.9472	0.0779	0.3849	0.061*
C43	0.8474 (3)	0.10582 (14)	0.4691 (4)	0.0391 (12)
C44	0.8301 (3)	0.12461 (14)	0.5775 (4)	0.0366 (11)
C45	0.7629 (3)	0.10718 (14)	0.3877 (4)	0.0413 (12)
C46	0.6939 (3)	0.12798 (14)	0.4415 (4)	0.0394 (12)
C47	0.7454 (4)	0.09201 (16)	0.2721 (5)	0.0526 (14)
H47A	0.7914	0.0782	0.2353	0.063*
C48	0.6580 (4)	0.09780 (17)	0.2118 (5)	0.0574 (15)
H48A	0.6445	0.0874	0.1344	0.069*
C49	0.5911 (3)	0.11913 (17)	0.2678 (5)	0.0503 (13)
C50	0.6072 (3)	0.13394 (15)	0.3832 (4)	0.0435 (12)
H50A	0.5610	0.1475	0.4203	0.052*

C51	0.3339 (5)	0.1956 (2)	0.5276 (6)	0.0749 (19)
C52	0.4214 (6)	0.2088 (3)	0.5720 (7)	0.106 (3)
H52A	0.4446	0.2012	0.6492	0.127*
C53	0.4744 (6)	0.2331 (3)	0.5035 (10)	0.115 (3)
H53A	0.5327	0.2424	0.5357	0.138*
C54	0.4440 (5)	0.2438 (2)	0.3900 (8)	0.095 (2)
H54A	0.4808	0.2602	0.3442	0.114*
C55	0.3587 (5)	0.2302 (2)	0.3440 (6)	0.0751 (18)
H55A	0.3375	0.2366	0.2654	0.090*
C56	0.3035 (4)	0.20723 (18)	0.4127 (6)	0.0645 (16)
H56A	0.2443	0.1993	0.3808	0.077*
C57	0.2722 (5)	0.1698 (2)	0.5987 (6)	0.115 (3)
H57A	0.3034	0.1643	0.6765	0.173*
H57B	0.2562	0.1414	0.5606	0.173*
H57C	0.2174	0.1870	0.6047	0.173*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0470 (3)	0.0561 (3)	0.0828 (5)	-0.0033 (3)	-0.0158 (3)	-0.0017 (3)
Br2	0.0596 (4)	0.0973 (5)	0.0704 (5)	0.0069 (3)	-0.0195 (3)	0.0054 (4)
Br3	0.0682 (4)	0.0893 (5)	0.0820 (5)	0.0022 (3)	0.0355 (4)	-0.0194 (4)
Br4	0.0723 (4)	0.0711 (4)	0.1045 (6)	0.0105 (3)	0.0264 (4)	-0.0221 (4)
C1	0.041 (3)	0.036 (3)	0.046 (3)	-0.003 (2)	0.012 (3)	0.002 (2)
C2	0.037 (3)	0.040 (3)	0.048 (3)	-0.001 (2)	0.002 (2)	-0.006(3)
C3	0.034 (3)	0.040 (3)	0.075 (4)	-0.008 (2)	0.007 (3)	-0.007 (3)
C4	0.052 (3)	0.038 (3)	0.061 (4)	-0.002 (2)	0.017 (3)	0.005 (3)
C5	0.042 (3)	0.029 (3)	0.044 (3)	-0.004 (2)	0.014 (2)	-0.007 (2)
C6	0.028 (2)	0.029 (2)	0.047 (3)	0.000 (2)	0.011 (2)	-0.002 (2)
C7	0.043 (3)	0.032 (3)	0.042 (3)	0.001 (2)	0.007 (2)	-0.002 (2)
C8	0.038 (3)	0.033 (3)	0.034 (3)	0.004 (2)	0.003 (2)	-0.002 (2)
C9	0.033 (3)	0.034 (3)	0.046 (3)	-0.001 (2)	0.004 (2)	0.006 (2)
C10	0.060 (4)	0.042 (3)	0.049 (3)	0.005 (3)	0.009 (3)	0.010 (3)
C11	0.068 (4)	0.048 (3)	0.046 (3)	0.020 (3)	0.004 (3)	0.012 (3)
C12	0.047 (3)	0.053 (3)	0.046 (3)	0.010 (3)	0.002 (3)	-0.004 (3)
C13	0.042 (3)	0.045 (3)	0.042 (3)	-0.001 (2)	0.006 (3)	0.003 (3)
C14	0.031 (3)	0.044 (3)	0.052 (3)	0.000 (2)	0.003 (2)	0.003 (3)
C15	0.033 (3)	0.059 (3)	0.052 (4)	0.000 (2)	0.005 (3)	-0.005 (3)
C16	0.039 (3)	0.078 (4)	0.052 (4)	-0.005 (3)	0.013 (3)	0.012 (3)
C17	0.049 (3)	0.051 (3)	0.061 (4)	-0.010 (3)	0.008 (3)	0.018 (3)
C18	0.037 (3)	0.041 (3)	0.040 (3)	-0.007 (2)	0.000 (2)	0.005 (2)
C19	0.026 (2)	0.046 (3)	0.032 (3)	-0.005 (2)	-0.002 (2)	0.004 (2)
C20	0.044 (3)	0.034 (3)	0.050 (3)	-0.008 (2)	0.006 (3)	0.003 (2)
C21	0.029 (3)	0.035 (3)	0.045 (3)	-0.002 (2)	0.002 (2)	-0.002 (2)
C22	0.063 (4)	0.044 (3)	0.075 (4)	-0.006 (3)	0.012 (3)	0.010 (3)
C23	0.067 (4)	0.039 (3)	0.086 (5)	0.004 (3)	0.008 (4)	0.001 (3)
C24	0.043 (3)	0.054 (4)	0.063 (4)	-0.001 (3)	0.006 (3)	-0.009(3)
C25	0.040 (3)	0.042 (3)	0.058 (4)	-0.004 (2)	0.004 (3)	0.005 (3)

Br5	0.0541 (3)	0.0497 (3)	0.0768 (4)	0.0034 (3)	0.0161 (3)	0.0126 (3)
Br6	0.0995 (5)	0.0457 (3)	0.0841 (5)	-0.0111 (3)	0.0232 (4)	0.0011 (3)
Br7	0.0457 (3)	0.0749 (4)	0.0777 (4)	-0.0033 (3)	-0.0082 (3)	0.0151 (3)
Br8	0.0624 (4)	0.1103 (5)	0.0674 (4)	-0.0060 (4)	-0.0166 (3)	-0.0071 (4)
C26	0.033 (3)	0.053 (3)	0.041 (3)	0.010 (2)	0.006 (2)	0.000 (3)
C27	0.029 (3)	0.045 (3)	0.048 (3)	0.003 (2)	-0.002 (2)	0.002 (3)
C28	0.037 (3)	0.067 (4)	0.040 (3)	-0.001 (3)	0.006 (2)	0.001 (3)
C29	0.045 (3)	0.055 (3)	0.051 (3)	0.005 (3)	0.008 (3)	-0.011 (3)
C30	0.030 (3)	0.048 (3)	0.038 (3)	0.004 (2)	0.003 (2)	-0.004 (2)
C31	0.030 (3)	0.042 (3)	0.037 (3)	0.005 (2)	0.008 (2)	0.004 (2)
C32	0.032 (3)	0.039 (3)	0.038 (3)	0.003 (2)	0.001 (2)	-0.008 (2)
C33	0.031 (3)	0.036 (3)	0.045 (3)	0.009 (2)	0.005 (2)	-0.004 (2)
C34	0.032 (3)	0.044 (3)	0.039 (3)	0.002 (2)	0.007 (2)	-0.001 (2)
C35	0.048 (3)	0.053 (3)	0.049 (3)	0.005 (3)	0.014 (3)	-0.014 (3)
C36	0.056 (3)	0.040 (3)	0.065 (4)	0.002 (3)	0.002 (3)	-0.013 (3)
C37	0.046 (3)	0.039 (3)	0.055 (4)	-0.008 (2)	0.006 (3)	0.007 (3)
C38	0.044 (3)	0.043 (3)	0.042 (3)	0.006 (2)	0.007 (2)	-0.006 (3)
C39	0.046 (3)	0.046 (3)	0.041 (3)	0.001 (2)	0.009 (3)	0.002 (2)
C40	0.040 (3)	0.044 (3)	0.062 (4)	0.000 (2)	0.004 (3)	0.014 (3)
C41	0.038 (3)	0.057 (3)	0.069 (4)	0.009 (3)	0.024 (3)	0.006 (3)
C42	0.053 (3)	0.045 (3)	0.058 (4)	0.005 (3)	0.021 (3)	0.001 (3)
C43	0.037 (3)	0.030 (3)	0.052 (3)	0.003 (2)	0.012 (3)	0.002 (2)
C44	0.035 (3)	0.033 (3)	0.042 (3)	0.000(2)	0.010 (2)	0.002 (2)
C45	0.046 (3)	0.033 (3)	0.046 (3)	-0.001 (2)	0.011 (3)	-0.002 (2)
C46	0.042 (3)	0.033 (3)	0.044 (3)	0.002 (2)	0.008 (3)	0.001 (2)
C47	0.061 (4)	0.054 (3)	0.045 (4)	0.003 (3)	0.013 (3)	-0.011 (3)
C48	0.075 (4)	0.054 (3)	0.042 (3)	-0.010 (3)	0.003 (3)	-0.014 (3)
C49	0.050 (3)	0.056 (3)	0.043 (3)	-0.008 (3)	-0.005 (3)	-0.005 (3)
C50	0.042 (3)	0.042 (3)	0.048 (3)	-0.003 (2)	0.009 (3)	-0.003 (2)
C51	0.103 (6)	0.063 (4)	0.059 (5)	0.028 (4)	0.012 (4)	-0.001 (4)
C52	0.106 (7)	0.133 (7)	0.071 (6)	0.040 (6)	-0.022 (5)	-0.024 (5)
C53	0.073 (6)	0.137 (8)	0.129 (9)	0.011 (5)	-0.014 (6)	-0.030(7)
C54	0.062 (5)	0.097 (5)	0.124 (7)	0.003 (4)	0.009 (5)	0.001 (5)
C55	0.074 (5)	0.072 (4)	0.077 (5)	0.005 (4)	-0.002 (4)	-0.005 (4)
C56	0.061 (4)	0.054 (4)	0.076 (5)	0.007 (3)	-0.001 (4)	-0.002 (3)
C57	0.186 (9)	0.066 (4)	0.104 (6)	0.023 (5)	0.062 (6)	0.008 (4)

Geometric parameters (Å, °)

Br1—C2	1.891 (5)	C28—C29	1.388 (6)
Br2—C12	1.891 (5)	C28—H28A	0.9300
Br3—C15	1.889 (5)	C29—C30	1.393 (6)
Br4—C24	1.905 (5)	С29—Н29А	0.9300
C1—C6	1.368 (6)	C30—C31	1.390 (6)
C1—C2	1.375 (6)	C30—C32	1.466 (6)
C1—H1A	0.9300	C31—C34	1.520 (6)
С2—С3	1.382 (6)	C32—C35	1.385 (6)
C3—C4	1.372 (7)	C32—C33	1.392 (6)
С3—НЗА	0.9300	C33—C38	1.366 (6)

C4—C5	1.394 (6)	C33—C34	1.531 (6)
C4—H4A	0.9300	C34—C46	1.534 (6)
C5—C6	1.398 (6)	C34—C44	1.536 (6)
С5—С7	1.462 (6)	C35—C36	1.374 (6)
С6—С9	1.532 (6)	С35—Н35А	0.9300
C7—C10	1.385 (6)	C36—C37	1.381 (7)
С7—С8	1.393 (6)	С36—Н36А	0.9300
C8—C13	1.373 (6)	C37—C38	1.384 (6)
C8—C9	1.530 (6)	C38—H38A	0.9300
C9—C19	1.519 (6)	C39—C44	1.375 (6)
C9—C21	1.531 (6)	C39—C40	1.388 (6)
C10—C11	1.394 (7)	С39—Н39А	0.9300
C10—H10A	0.9300	C40—C41	1.378 (7)
C11—C12	1.383 (6)	C41—C42	1.369 (7)
C11—H11A	0.9300	C41—H41A	0.9300
C12—C13	1.382 (6)	C42—C43	1.383 (6)
C13—H13A	0.9300	C42—H42A	0.9300
C14—C19	1.374 (6)	C43—C44	1.402 (6)
C14—C15	1.378 (6)	C43—C45	1.455 (6)
C14—H14A	0.9300	C45—C47	1.384 (7)
C15—C16	1.381 (6)	C45—C46	1.387 (6)
C16—C17	1.375 (6)	C46—C50	1.373 (6)
C16—H16A	0.9300	C47—C48	1.390 (7)
C17—C18	1.383 (6)	C47—H47A	0.9300
C17—H17A	0.9300	C48—C49	1.383 (7)
C18—C19	1.392 (6)	C48—H48A	0.9300
C18—C20	1.466 (6)	C49—C50	1.377 (6)
C20—C21	1.383 (6)	C50—H50A	0.9300
C20—C22	1.388 (6)	C51—C56	1.374 (8)
C21—C25	1.373 (6)	C51—C52	1.378 (9)
C22—C23	1.376 (7)	C51—C57	1.493 (8)
C22—H22A	0.9300	C52—C53	1.368 (10)
C23—C24	1.369 (7)	C52—H52A	0.9300
C23—H23A	0.9300	C53—C54	1.353 (10)
C24—C25	1.378 (6)	С53—Н53А	0.9300
C25—H25A	0.9300	C54—C55	1.357 (8)
Br5—C27	1.896 (4)	C54—H54A	0.9300
Br6—C37	1.894 (4)	C55—C56	1.370 (8)
Br7—C40	1.896 (5)	С55—Н55А	0.9300
Br8—C49	1.898 (5)	С56—Н56А	0.9300
C26—C31	1.383 (6)	С57—Н57А	0.9600
C26—C27	1.384 (6)	С57—Н57В	0.9600
C26—H26A	0.9300	С57—Н57С	0.9600
C27—C28	1.374 (6)		
C6—C1—C2	118.8 (4)	C31—C30—C29	119.9 (4)
C6—C1—H1A	120.6	C31—C30—C32	108.3 (4)
C2—C1—H1A	120.6	C29—C30—C32	131.8 (4)
C1—C2—C3	121.0 (5)	C26—C31—C30	120.9 (4)
C1—C2—Br1	119.1 (4)	C26—C31—C34	127.8 (4)

C3—C2—Br1	119.9 (4)	C30—C31—C34	111.3 (4)
C4—C3—C2	120.4 (4)	C35—C32—C33	119.2 (4)
С4—С3—НЗА	119.8	C35—C32—C30	131.9 (4)
С2—С3—НЗА	119.8	C33—C32—C30	108.8 (4)
C3—C4—C5	119.5 (5)	C38—C33—C32	121.7 (4)
С3—С4—Н4А	120.3	C38—C33—C34	127.6 (4)
С5—С4—Н4А	120.3	C32—C33—C34	110.5 (4)
C4—C5—C6	119.0 (5)	C31—C34—C33	100.9 (4)
C4—C5—C7	131.9 (5)	C31—C34—C46	114.2 (4)
C6—C5—C7	109.1 (4)	C33—C34—C46	116.9 (4)
C1—C6—C5	121.3 (4)	C31—C34—C44	113.7 (4)
C1—C6—C9	128.8 (4)	C33—C34—C44	110.2 (4)
C5—C6—C9	109.9 (4)	C46—C34—C44	101.5 (4)
C10—C7—C8	119.8 (5)	C36—C35—C32	119.6 (5)
C10—C7—C5	131.2 (4)	С36—С35—Н35А	120.2
C8—C7—C5	109.0 (4)	С32—С35—Н35А	120.2
C13—C8—C7	121.4 (4)	C35—C36—C37	120.0 (4)
C13—C8—C9	128.1 (4)	C35—C36—H36A	120.0
C7—C8—C9	110.3 (4)	C37—C36—H36A	120.0
C19—C9—C8	112.9 (3)	C36—C37—C38	121.2 (4)
C19—C9—C21	101.0 (4)	C36—C37—Br6	119.2 (4)
C8 - C9 - C21	116 8 (4)	C_{38} — C_{37} —Br6	1196(4)
C19 - C9 - C6	113 4 (4)	$C_{33} - C_{38} - C_{37}$	118.2 (4)
C8-C9-C6	101 6 (3)	C33—C38—H38A	120.9
C21—C9—C6	111.6 (3)	C37—C38—H38A	120.9
C7—C10—C11	119.3 (5)	C44—C39—C40	117.4 (5)
C7—C10—H10A	120.3	С44—С39—Н39А	121.3
C_{11} C_{10} H_{10A}	120.3	C40—C39—H39A	121.3
C12—C11—C10	119.4 (5)	C41—C40—C39	121.7 (5)
C12—C11—H11A	120.3	C41—C40—Br7	119.3 (4)
C10-C11-H11A	120.3	C39—C40—Br7	119.0 (4)
C13—C12—C11	121.8 (5)	C42—C41—C40	120.5 (5)
C13—C12—Br2	119.3 (4)	C42—C41—H41A	119.7
C11-C12-Br2	118.9 (4)	C40—C41—H41A	119.7
C8 - C13 - C12	118.2 (4)	C41 - C42 - C43	119.5 (5)
C8—C13—H13A	120.9	C41—C42—H42A	120.3
C12—C13—H13A	120.9	C43—C42—H42A	120.3
C19-C14-C15	118 1 (4)	C42-C43-C44	1193(5)
C19—C14—H14A	120.9	C42—C43—C45	132.0 (5)
C15-C14-H14A	120.9	C44-C43-C45	108 7 (4)
C14—C15—C16	121.0 (5)	$C_{39} - C_{44} - C_{43}$	121.6 (4)
C14—C15—Br3	119.2 (4)	C39—C44—C34	128.3 (4)
C16—C15—Br3	119.8 (4)	C43—C44—C34	110.0 (4)
C17—C16—C15	120.9 (5)	C47—C45—C46	120.0 (5)
C17—C16—H16A	119.6	C47—C45—C43	130.0 (5)
C15—C16—H16A	119.6	C46—C45—C43	109.9 (4)
C16—C17—C18	118.6 (5)	C50—C46—C45	121.7 (5)
C16—C17—H17A	120.7	C50—C46—C34	128.3 (4)
C18—C17—H17A	120.7	C45—C46—C34	109.9 (4)
			× /

120.0 (5)	C45—C47—C48	119.0 (5)
131.9 (4)	C45—C47—H47A	120.5
108.1 (4)	C48—C47—H47A	120.5
121.3 (4)	C49—C48—C47	119.4 (5)
127.5 (4)	C49—C48—H48A	120.3
111.2 (4)	C47—C48—H48A	120.3
120.3 (5)	C50—C49—C48	122.3 (5)
109.2 (4)	C50-C49-Br8	120.0 (4)
130.4 (5)	C48—C49—Br8	117.7 (4)
120.8 (4)	C46—C50—C49	117.5 (5)
128.6 (4)	С46—С50—Н50А	121.2
110.5 (4)	С49—С50—Н50А	121.2
119.0 (5)	C56—C51—C52	117.3 (7)
120.5	C56—C51—C57	119.7 (7)
120.5	C52—C51—C57	123.0 (7)
119.6 (5)	C53—C52—C51	120.5 (8)
120.2	С53—С52—Н52А	119.7
120.2	С51—С52—Н52А	119.7
122.4 (5)	C54—C53—C52	121.4 (8)
118.0 (4)	С54—С53—Н53А	119.3
119.6 (4)	С52—С53—Н53А	119.3
117.8 (5)	C53—C54—C55	118.8 (8)
121.1	С53—С54—Н54А	120.6
121.1	С55—С54—Н54А	120.6
118.3 (4)	C54—C55—C56	120.4 (7)
120.8	С54—С55—Н55А	119.8
120.8	С56—С55—Н55А	119.8
121.8 (4)	C55—C56—C51	121.4 (6)
119.8 (4)	С55—С56—Н56А	119.3
118.4 (4)	С51—С56—Н56А	119.3
119.8 (5)	С51—С57—Н57А	109.5
120.1	С51—С57—Н57В	109.5
120.1	Н57А—С57—Н57В	109.5
119.3 (5)	С51—С57—Н57С	109.5
120.4	Н57А—С57—Н57С	109.5
120.4	Н57В—С57—Н57С	109.5
	120.0 (5) 131.9 (4) 108.1 (4) 121.3 (4) 127.5 (4) 111.2 (4) 120.3 (5) 109.2 (4) 130.4 (5) 120.8 (4) 110.5 (4) 119.0 (5) 120.5 120.5 120.5 120.2 122.4 (5) 118.0 (4) 119.6 (4) 117.8 (5) 121.1 118.3 (4) 120.8 120.8 120.8 120.8 120.8 121.1 118.3 (4) 120.8 120.8 120.8 121.8 (4) 119.8 (5) 120.1 120.1 119.3 (5) 120.4 120.4	120.0 (5) $C45-C47-C48$ 131.9 (4) $C45-C47-H47A$ 108.1 (4) $C48-C47-H47A$ 121.3 (4) $C49-C48-C47$ 127.5 (4) $C49-C48-H48A$ 111.2 (4) $C47-C48-H48A$ 120.3 (5) $C50-C49-C48$ 109.2 (4) $C50-C49-Br8$ 120.8 (4) $C46-C50-C49$ 128.6 (4) $C46-C50-H50A$ 110.5 (4) $C49-C50-H50A$ 110.5 (4) $C49-C50-H50A$ 119.0 (5) $C56-C51-C52$ 120.5 $C52-C51-C57$ 120.5 $C52-C51-C57$ 120.5 $C53-C52-H52A$ 120.2 $C53-C52-H52A$ 120.2 $C54-C53-H52A$ 120.2 $C53-C54-H52A$ 121.1 $C55-C54-H54A$ 117.8 (5) $C53-C54-H54A$ 121.1 $C55-C56-C51$ 120.8 $C54-C55-C56$ 120.8 $C54-C55-H55A$ 120.8 $C56-C51-H57A$ 120.8 $C56-C56-C51$ 119.8 (4) $C55-C56-H56A$ 119.8 (4) $C55-C56-H56A$ 119.8 (5) $C51-C57-H57A$ 120.1 $C51-C57-H57A$ 120.1 $C51-C57-H57A$ 120.1 $C51-C57-H57B$ 120.1 $C51-C57-H57B$ 120.4 $H57A-C57-H57C$ 120.4 $H57A-C57-H57C$

